大象传媒

Using the sine and cosine rules to find a side or angle in a triangleThe sine rule

The sine rule can be used to find an angle from 3 sides and an angle, or a side from 3 angles and a side. The cosine rule can find a side from 2 sides and the included angle, or an angle from 3 sides.

Part of MathsTrigonometric skills

The sine rule

Watch this video to learn about the sine rule.

The trigonometric ratios sine, cosine and tangent are used to calculate angles and sides in right angled triangles. We are now going to extend trigonometry beyond right angled triangles and use it to solve problems involving any triangle.

\(\frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{c}{{\sin C}}\)

We can use the sine rule when we're given the sizes of:

  • two sides and one angle (which is opposite to one of these sides)
  • one side and any two angles

Example

Find the size of angle R.

Diagram of triangle with 75掳 angle and values 9cm and 4cm

\(\frac{p}{{\sin P}} = \frac{r}{{\sin R}}\)

Substitute the information from the diagram

\(\frac{9}{{\sin (75^\circ )}} = \frac{4}{{\sin R}}\)

Use 'change side, change operation'.

\(9\sin R = 4\sin (75^\circ )\)

\(\sin R = \frac{{4\sin (75^\circ )}}{9}\)

\(SinR=0.429\)

Moving sin to the other side becomes sin-1.

\(R=sin^{-1}\,0.429\)

\(R = 25.4^\circ (to\,1\,d.p.)\)

Remember to press 'shift' then 'sin' to get 'sin-1' on your calculator.

Now try the example question below.

Question

Find the length of YZ.

Diagram of triangle with 40掳 and 95掳 angles and value of 4cm