大象传媒

Adding vectors

\(\overrightarrow {PQ}\) has components \(\left( \begin{array}{l} 2\\ 5 \end{array} \right)\)

\(\overrightarrow {QR}\) has components \(\left( \begin{array}{l} 4\\ -3 \end{array} \right)\)

When we add these vectors the result is \(\overrightarrow {PQ} + \overrightarrow {QR} = \overrightarrow {PR}\)

Adding the components follows the rule \(\left( \begin{array}{l} a\\ b \end{array} \right) + \left( \begin{array}{l} c\\ d \end{array} \right) = \left( \begin{array}{l} a + c\\ b + d \end{array} \right)\)

So \(\overrightarrow {PQ} + \overrightarrow {QR} = \overrightarrow {PR}\) looks like this, \(\left( \begin{array}{l}2\\5\end{array} \right) + \left( \begin{array}{l}4\\-3\end{array} \right) = \left( \begin{array}{l}6\\2\end{array} \right)\)

Diagram of arrow vectors