ý

Further motion concepts – WJECExplosions - Higher tier only

Moving objects have momentum, and forces cause it to change. The total momentum in an explosion or collision is conserved and stays the same. Equations of motion apply to uniformly accelerated motion.

Part of Physics (Single Science)Forces, space and radioactivity

Explosions - Higher tier only

An object being fired from a cannon is also a collision where momentum must be conserved. As the momentum before the collision is zero, the momentum after the collision is zero. In physics, this type of event is termed an explosion.

Consider a cannon ball of mass \({\text{m}}_{\text{B}}\) 4 kg fired at velocity \({\text{v}}_{\text{B}}\) 120 ms-1 from a cannon of mass \({\text{m}}_{\text{C}}\) 96 kg. This allows determination of the recoil of the cannon \({\text{v}}_{\text{C}}\).

Cannonball being fired from a cannon.

The total momentum before is zero, so by the law of conservation of momentum the momentum after the ball is fired is also zero.

\({\text{m}}_{\text{B}}{\text{v}}_{\text{B}}+ {\text{m}}_{\text{C}}{\text{v}}_{\text{C}}~=~{0}\)

Therefore

\((4\times 120) + (96 \times {\text{v}}_{\text{C}}) = 0\)

\({\text{v}}_{\text{C}}~=~\frac{{ - 480}}{{96}}\)

\(=~{-~5}{\text{ ms}}^{-1}\)

The negative sign means the cannon moves backwards to conserve the momentum in the explosion, this effect is known as .