´óÏó´«Ã½

The ´óÏó´«Ã½ Blogs - Spaceman
« Previous | Main | Next »

UK takes 'open source' route into space

Jonathan Amos | 16:50 UK time, Wednesday, 17 November 2010

The fundamental barrier to greater space activity is the cost of access.

If people didn't have to part with squillions to get up there, far more spacecraft would go into orbit than is currently the case. And it's a problem that amplifies itself as well.

UKube artist's impression

UKube-1 will be some 30cm in length

High launch prices drive the need for big, rigorously tested spacecraft. They have to be that way because when you've paid so much to launch, you have to make damn sure your bird works. In-orbit failure is simply unthinkable. Add in insurance premiums and licences and the costs spiral still further.

It works against innovation, too. Taking risks is, well, risky. So doing space is a process that is necessarily conservative. If only we could lower launch costs, the spiral might unwind; there would be more opportunity and hopefully even greater innovation.

So while we wait for the truly reusable, low-cost launch vehicle, what's to be done?

Well, some have gone down the route - the roughly 1kg, 10cm-square boxes that come in standard form and can be launched en-masse as secondary passengers on rockets.

It's an approach that can dramatically reduce a mission bill. We're talking tens to a few hundred thousand pounds as opposed to tens to a few hundred million pounds.

The compact boxes are proper spacecraft, just in miniature. They have a structure, solar panels, onboard processing, attitude control, comms and - increasingly - very capable payloads.

It's a challenge of course to do missions where the available power is measured in the odd watt, but we know from our mobile phones just how much function can be packed into a very small space.

And in CubeSats now, teams are trying to do many of the same things that have always been done in space - astronomy, Earth observation, space weather studies, microgravity and biology experiments, technology demonstration, etc.

CubeSats will never be a match for their multi-tonne cousins, but they do represent a more inclusive kind of space activity where far more people could realistically get involved in a project.

, CubeSats are now being developed and flown around the globe.

PSLV

The Indian PSLV is a regular CubeSat carrier

Britain, it is probably true to say, has been a bit behind the curve on this one, which is why the (pron: "You-Cube-One") initiative is most welcome.

The UK Space Agency (UKSA) has issued an Ìýto interested parties who'd like to fly instruments on a British CubeSat set to launch late next year.

Up to three payloads from UK-based providers will be selected for the flight.

They will go in a spacecraft called a "3U", which is essentially three 10cm CubeSats joined end to end.

Funded by UKSA, the Technology Strategy Board and the Science and Technology Facilities Council, the UKube-1 project is being led by the Glasgow company Clyde Space and (who've made some of biggest satellites ever flown in Ìýspace).

You could call Craig Clark, the CEO of , something of an evangelist for CubeSats.

His company makes and sells CubeSat components, and these items don't just go into "smalltown" university-built boxes.

Clyde kit is going in the CubeSats of major US programmes run by the Army, the National Reconnaissance Office, the National Science Foundation and Nasa. Go Glasgow! Craig told me:

"CubeSats are a rapidly growing area and we've been involved almost since the beginning. It's really about getting access to space, and the way CubeSats are launched makes that much easier. Everything is standard, which means you can go on to our website and buy a power system and solar panels with your credit card. It's got to that level. We do all that, including batteries and comms systems, but we also do a pulse plasma thruster - a propulsion system for a CubeSat. And we're developing the platform for UKube with Strathclyde University.
Ìý
"It's great that the UK Space Agency should now get involved in CubeSats. The Americans may be much further ahead in using them but we've got such good capability in our universities and small companies that it's ideal for us. It fits the British way of doing things.
Ìý
"There's huge potential and so many ideas out there. We've been looking at imaging systems. It's definitely within the realms of technology today to have sub-three-metre [resolution] imaging from a 3kg satellite. That's the kind of stuff we should be doing in the UK"

To give you an idea of how cute some of this stuff is, Imperial College London is involved in a US CubeSat project called Cinema which may launch around the same time as UKube.

Imperial's Magic sensor

The Magic sensor head is tiny

Imperial is famous for its magnetometers - instruments that can trace the magnetic fields that shape space plasmas. It was an Imperial-led magnetometer team working on the that made the at Saturn's moon Enceladus.

Well, Imperial has developed a tiny magnetometer called Magic for CubeSat applications. You can see the size of the sensor head (picture right) that sits out on the end of a boom. It weighs just 3g. - the phenomenon that arises when the stream of charged particles billowing away from the Sun crashes into Earth's magnetic shield.

The AO on UKube-1 is open until 8 December. The launch is likely to be on an Indian PSLV. The hope is that UKube-1 will be followed by UKube-2, 3, 4, 5, etc in subsequent years. Dr Ronan Wall, from Astrium, in the UKube programme manger:

"That's certainly the vision - the idea is that you would have different universities or companies building them so that they could all have a go. The hope is that it would lead to more payloads coming into the space industry; we'd have new supply chains. If we embrace 'open source space', stuff will just happen, innovation will just happen, in a way that large formulaic programmes militate against. We can stick new electronics on CubeSats and just see what happens. It's a playground for innovation."

Comments

or to comment.

´óÏó´«Ã½ iD

´óÏó´«Ã½ navigation

´óÏó´«Ã½ © 2014 The ´óÏó´«Ã½ is not responsible for the content of external sites. Read more.

This page is best viewed in an up-to-date web browser with style sheets (CSS) enabled. While you will be able to view the content of this page in your current browser, you will not be able to get the full visual experience. Please consider upgrading your browser software or enabling style sheets (CSS) if you are able to do so.