大象传媒

Inequalities - AQAInequalities

Inequalities show the relationship between two expressions that are not equal to one another. Inequalities are useful when projecting profits and breakeven figures.

Part of MathsAlgebra

Inequalities

Inequalities are the relationships between two expressions which are not equal to one another. The symbols used for inequalities are <, >, 鈮, 鈮 and 鈮.

\(7 \textgreater x\) reads as '7 is greater than \(x\)' (or '\(x\) is less than 7', reading from right to left).

\(x \leq -4\) reads as '\(x\) is less than or equal to -4' (or '-4 is greater than or equal to \(x\)', reading from right to left).

\(x \neq 5 \) reads as 鈥榎(x\) is not equal to 5.鈥

Inequalities on a number line

Inequalities can be shown on a number line.

Open circles are used for numbers that are less than or greater than (< or >). Closed circles are used for numbers that are less than or equal to and greater than or equal to (鈮 or 鈮).

For example, this is the number line for the inequality \(x \geq 0\):

Number line, showing x is greater than 0

The symbol used is greater than or equal to (鈮) so a closed circle must be used at 0. \(x\) is greater than or equal to 0, so the arrow from the circle must show the numbers that are larger than 0.

Example

Show the inequality \(x \textless 2\) on a number line.

\(x\) is less than (<) 2, which means an open circle at 2 must be used. \(x\) is less than 2, so an arrow below the values of 2 must be drawn in.

Number line, showing x is less than 0

Question

What inequality is shown by this number line?

Number line showing that x is greater than -5 and less than 4