大象传媒

Surds - AQAMultiplying and dividing surds

Surds are numbers left in square root form that are used when detailed accuracy is required in a calculation. They are numbers which, when written in decimal form, would go on forever.

Part of MathsNumber

Multiplying and dividing surds

Multiplying surds with the same number inside the square root

We know that:

\(\sqrt{2} \times \sqrt{2} = 2\)

\(\sqrt{5} \times \sqrt{5} = 5\)

So multiplying surds that have the same number inside the square root gives a whole, .

\((\sqrt{3})^2 = \sqrt{3} \times \sqrt{3} = \sqrt{9} = 3\)

Question

Simplify the following surds:

  1. \((\sqrt{7})^2\)
  2. \((\sqrt{11})^2\)
  3. \((\sqrt{15})^2\)

Multiplying surds with different numbers inside the square root

First, simplify the numbers inside the square roots if possible, then multiply them.

Examples

1. \(\sqrt{8} \times \sqrt{10} = \sqrt{80}\)

\(\sqrt{8} = \sqrt{4 \times 2} \)

=\(\sqrt{4} \times \sqrt{2}\)

=\( 2\sqrt{2}\)

\(\sqrt{10} = \sqrt{2} \times \sqrt{5}\)

\(\sqrt{8} \times \sqrt{10} = 2\sqrt{2} \times \sqrt{2} \times \sqrt{5}\)

=\(2 \times 2 \times \sqrt{5}\)

=\(4\sqrt{5}\)

2. Multiply \( 2\sqrt{3} \times 3\sqrt{2}\)

First multiply the whole numbers:

\(2 \times 3 = 6\)

Then multiply the surds:

\(\sqrt{3} \times \sqrt{2} = \sqrt6\)

This makes: \(6\sqrt{6}\)

Dividing surds

Just like the method used to multiply, the quicker way of dividing is by dividing the component parts:

\(\frac{8 \sqrt{6}}{2 \sqrt{3}}\)

Divide the whole numbers:

\(8 \div 2 = 4\)

Divide the square roots:

\(\frac{\sqrt{6}}{\sqrt{3}} = \sqrt{2}\)

So the answer is:

\(4 \sqrt{2}\)

Question

  1. Simplify \(\sqrt{18} \times \sqrt{2}\)
  2. Simplify \(\frac{\sqrt{88}}{2}\)
  3. Multiply out \(\sqrt{11}(2 - \sqrt{3})\)